放射性廃棄物処分に対する地下水流動解析手法の高度化研究

白石 知成

(技術研究所)

Advanced research into groundwater flow analysis methods for the disposal of radioactive waste

Tomonari Shiraishi

放射性廃棄物処分における安全評価においては、地下施設から漏出した放射性核種が地下水により移流し、最終的に 人間環境へ運ばれることが想定されており、地下水流動に伴う放射性核種の移行評価が行われる。このため、安全評価 の精度向上に対しては、地下水流動解析手法を用いた予測解析の精度向上が重要であり、適切な流速場の解析結果から 得られる放射性物質の移動予測の精度向上が望まれている。

本報告では、2011年から5年に渡って実施した地下水解析手法の高度化研究の内容について紹介する。

In the safety assessment for the disposal of radioactive waste, radionuclides are assumed to have leaked from the underground facilities with the advection of groundwater, eventually entering the human environment; thus, the migration of these radionuclides due to the flow of groundwater is assessed. Accordingly, in order to ensure an accurate safety assessment, it is important to enhance the accuracy of prediction analysis used for groundwater flow analysis techniques, while striving to predict the movement of radioactive material derived from analysis of the appropriate velocity fields.

This report introduces our advanced research into groundwater analysis methods as conducted over the five years from 2011.

1.はじめに

放射性廃棄物処分の長期的な安全性については、 放射性核種による人間の被ばくシナリオの想定に基 づき被ばく線量によるリスク評価が行われる。最も 重要な被ばくシナリオとして、「地下水シナリオ」が 想定されており、地下施設から漏出した放射性核種 が周辺地下水とともに流動(移流)し、人間環境に 運ばれることにより、被ばくリスクを評価するもの である。地下水流動解析による移行経路や移行時 間の評価が重要となる。人工的な核種の移行抑制材 料(人工バリア)と地盤・岩盤(天然バリア)が潜 在的に有する物質移行の遅延特性を適切に評価する ことが、合理的な処分システムの設計に資すること となる。

地下水流動を対象とした解析手法は多く開発され ているが、特に有限要素法(以下、FEM と称す) は、図-1¹⁾に示すように解析領域の幾何形状を精度 良くモデル化することができるため、わが国の地質

構造のように複雑な形状の三次元複合領域や地下施 設の形状の再現性に対して大変強力な解析手法であ ると言える。

一方、2011年に青木ら²によって混合化形式FEM による放射性廃棄物処分施設を対象とした地下水流 動解析が発表され、高精度な地下水流動解析手法に 関心が高まった。これを受けて、筆者らの呼びかけ により任意の勉強会として「地下水流動解析手法の 高度化勉強会」が開催され、既存の研究に対するレ ビューや解析手法の比較検討が実施された^{3),4)}。

既存研究を整理すると、1990年代初頭から FEM による地下水流動解析の問題点の指摘とその改善の ための研究が欧米を中心に進められた 5,6,7)。節点に おける水頭値のみを未知数とする従来のFEM では、 連続なダルシー流速場が精度良く得られないという 指摘であった。この指摘に対する改善のための研究 開発には二つあり、一つは水頭値とダルシー流速を 同時に近似する混合補間法を用いる方法であり、混 合モデル 5とハイブリッド・モデル 6による定式化 が示された。ともに要素内のダルシー流速近似に隣 接要素間の流量を連続できる Raviart-Thomas 混 合補間法 ⁸⁾を用いることが特徴である。もう一つは FEM の結果から連続なダルシー流速場を求める工 夫を行うものであった 7。しかし、上記の研究報告 は、二次元問題における有用性を論じているのがほ とんどであり、三次元問題については明確になって いなかった。

そこで、筆者らは上述の二つの方法の三次元問題 における有用性を確認するためのプログラム開発を 行い、基本性能の検討を実施してきた^{9),10),11)}。公益 社団法人日本地下水学会が発行している地下水学会 誌で取り上げられた「地下水流動解析の高度化手法 と検証・確認」の特集号に対しても、研究成果の発 表を行った^{12),13)}。本報告ではこれまで実施してきた 地下水流動解析手法の高度化研究内容のまとめとし て、手法の違いによる特徴、実用化に対する適性や 注意点についての検討結果を紹介する。

Raviart-Thomas (RT) 混合補間法を用いた三次元 有限要素法の特徴

連続的なダルシー流速場を精度良く求めるための 1つめの研究開発として、RT 混合補間法を用いる 方法については混合モデル 5ではなく、ラグランジ ュ未定乗数法を適用したハイブリッド・モデル 6を 選定した。大規模問題となる三次元解析に対して順 応性が高いことが理由である。RT 混合補間法を用 いた解析手法の詳細については、櫻井ら¹¹に報告さ れている。ここでは RT 混合補間法を用いたハイブ リッド・モデル解析手法(以下、RT-HM と称す) の特徴や、一般的な水頭値のみを線形補間する FEM (以下、L-CM と称す)との違いについて、いくつ かの数値実験結果の比較から整理する。

2.1 RT-HM の特徴とL-CM との違い

櫻井ら^{11),12)}の数値実験例として、図-2に示すモ デル解析結果について紹介する。奥行長さを1とし た三次元 L 字型の均質媒体内の浸透問題であり、左 下 FA 面での水頭値 φ=20、右上 CD 面での水頭値 解析を実施した。図-2 は四面体要素分割の一例を 示している。数値実験にあたっては、六面体要素、 五面体要素の場合についても対象とした。RT-HM と L-CM の解析手法による違いの比較を表-1 に示 す。2 つの手法は水頭値、流速ベクトルの評価方法 が異なっており、RT-HM の特筆すべき特徴は、隣 接要素間の流量が連続する点と、不透水境界条件を 精度よく近似できる点である。しかしながら、図-2 のような解析モデルでは、隅角部となる BE 付近に 着目すると、流速ベクトルについては隣接要素間で 必ずしも連続する訳ではなく、流速ベクトルが不連 続であっても隣接要素間の流量が連続するため、後 述(4.参照)する流跡線解析の精度が良くなる。

また、**RT**HM では設定した要素形状の違いや分 割方向(五面体要素および四面体要素の場合)の影 響を受けて流速ベクトルの評価結果が異なることが わかった。

図-2 L型流れ問題と四面体要素分割の例^{11),12)}

表-1 解析手法による違いの比較

	RT-HM	L-CM
未知変数	要素境界面と要	節点水頭値
	素中心の水頭値	水頭値は節点位
	水頭値は不連続	置で連続
流量評価	要素境界面流量	節点流量として
	を算出してお	算出。要素境界
	り、要素間で連	面の流量は未算
	続する	出
流速ベク	要素境界面流量	節点水頭値の形
トル評価	から要素内 RT 補	状関数微分によ
	間により算出	り算出
六面体要	要素内の流速は	一定動水勾配条
素	連続的である	件では流速は言
	が、要素間の流	一定。要素間の
	速ベクトルは不	流速ベクトルは
	連続となり得る	基本的に不連続
五面体要	要素内流速は一	要素内流速は一
素	定となり、要素	定。要素間の流
および	間の流速ベクト	速ベクトルは基
四面体要	ルは不連続とな	本的に不連続
素	り得る	
その他	不透水境界では	不透水境界に直
	境界に沿った流	交する流速成分
	速成分のみであ	が発生する可能
	り精度がよい	性がある
	要素形状、境界	要素形状、境界
	条件によっては	条件によらず、
	要素内流速が0	全要素で流速が
	となる場合があ	発生する
	る	

図-3 にメッシュ分割方向が異なる五面体要素の 解析結果の流速ベクトルの比較を示す。流速ベクト ルは要素中心と節点位置で要素ごとに示している。 節点流速は隣接要素での重なりを避けるため要素の 中心方向に少し移動した位置を始点とした。赤色は RT-HM、黒色はL-CM、緑色は参照解として、要素 サイズを 0.04 の細かい六面体要素で分割した解析 結果である。参照解は RT-HM、L-CM の中間的な 解析結果であること、不透水境界での RT-HM 結果 の流速ベクトルの精度が良いこと、などがわかる。 また、五面体要素や四面体要素では、要素内の流速 ベクトル成分が一定となるため、L-CM と同様に隣 接する要素境界面での流速ベクトルが不連続となる ことや、隅角部の五面体要素では要素分割の方向と 境界条件との関係によって、要素内流速が0となる 場合があることがわかった。この数値実験の結果から RT-HM では、六面体要素による流速ベクトル評価が適すると考えられた。なお、参照解に見られるように基本的にメッシュ分割が細かいほど、両者の流速ベクトルの評価結果の差は小さくなる。

図-3 五面体要素の向きによる流速の違い^{11),12)}

2.2 一様流のパッチテスト

RTHM については、要素形状による流速ベクト ル評価に課題があると考えられることから、図-4 に示す長さが 10 で、正方形の単位断面を有する均 質媒体に対し、流速が1となるような全水頭を両端 に規定して、RTHM が一様流を正確に再生できる か否かのパッチテストを実施^{11),12)}した。その結果、 RTHM では図-5 に示すような要素境界面が歪ん だ六面体要素と五面体要素を用いた解析モデルにお いて、一様流を生成できない、すなわち流速ベクト ルが一様とならないケースがあることがわかった。

図-4 一次元一様流パッチテストモデル

(a) 歪んだ六面体要素を含む解析モデル

(b) 歪んだ五面体要素を含む解析モデル
 図-5 RT-HM において一様流を生成できなかった解析モデルの例

上記の問題については、二次元要素では起こり得 ないため、二次元問題を対象としていた既発表論文 では指摘されていなかった。三次元モデルによる検 討の結果、明らかになったものである。なお、この 要因については小野ら¹⁴により検討されており、要 素の体積の評価方法に起因することがわかっている。 このため、RT-HM の適用条件としてメッシュ分割 に対して以下の条件が示された。

- ① 構造格子 (六面体)
- ② 四面体要素

③ 要素体積の評価値が正しくなる要素形状 FEM の最大の特徴の1つは、複雑な形状への順 応性が高いことであり、特に地下水流動解析のよう に地形面や地質境界面といった三次元的に複雑な曲 面を有する領域を対象とする問題に対して、差分法 や有限体積法と比較して FEM は高い優位性を有す ることになるが、RTHM の三次元要素を用いる場 合には注意する必要があることがわかった。なお、 L-CM によるパッチテストの結果は要素形状によら ず理論解と同じ流量、流速場を再現できた。

2.3 被圧井戸問題に対する解析精度

RT-HM については、要素内流速が連続的に評価 される点は大きな特徴であるため、被圧井戸問題に 対してL-CMよりも解析精度が高くなると予測され る。そこで数値実験による確認を行った。

L-CM の解析精度に対する空間離散化影響につい て、被圧井戸理論を用いた検討 ¹⁵⁾によると、L-CM による被圧井戸間題では、井戸近傍において動水勾 配が1.0より大きくなる領域での動水勾配の再現性 が解析結果(水頭値、流量)の精度に影響すること がわかっている。すなわち、L-CM では井戸周辺の 要素分割を細かくしなければ、解析精度が悪くなる。 また、L-CM による解析において、節点位置を井戸 とみなして境界条件とする場合にも、井戸径の影響 による解析精度補正のために、モデル化(メッシュ サイズ)に関する研究16),17)が行われている。井戸節 点周りのメッシュサイズだけでなく、節点を注水・ 揚水孔としてモデル化する際に山田ら 18)は周辺要 素の透水性を補正することにより、解析結果(水頭 値、流量)の精度向上を図る方法を提案している。 これらは井戸理論、すなわち放射状流に対する L-CM の解析精度に関する研究であり、隣接要素境 界面での流量の連続性と、要素内において流速分布 が連続的に評価できる RT-HM の特徴を考慮すると、 井戸理論に対する解析精度はL-CM よりも高いこと が予測される。

帯水層厚さ:10(m)、透水係数:1.0E-5(m/s)、井戸 半径:0.05(m)、影響圏半径:50(m)、井戸内水位: 11(m)、境界水位:16(m)の解析条件に対して、図ー 6に示す3種類の解析メッシュを用意した。3ケー スのメッシュサイズについて表-2に整理した。

図-6 に示す三次元解析領域は、被圧井戸周辺の 放射状流の流れ場を考慮し、10(°)の領域のみに対 して全て六面体要素を用いてモデル化したものであ り、対称面となる側面は不透水境界である。L-CM 解析の場合も、不透水境界面に沿った流動場が得ら れることから、RT-HM と同様に隣接境界面流量も 連続する解析条件である。なお、被圧帯水層の10(m) 厚さに対するメッシュ分割の違いは、解析結果に影 響するものではない。

	影響圈半径:50(m)、井戸半径:0.05(m)			
	要素分割数	最小要素長 (m)	最大要素長 (m)	
ケース 1	40	0. 194	3.873	
ケース 2	30	1.665(等分割)		
ケース 3	20	2.4975 (等分割)		

表-2 解析モデルのメッシュ分割(水平方向)

※井戸周辺に対して10°範囲のみをモデル化

※解析結果に対する鉛直方向のメッシュ分割影響は ない。

図-6 被圧井戸問題に対する解析モデル

RTHM と L-CM の解析結果の比較として、井戸 揚水量の解析結果と理論解の比率を表-3 に示す。 表-3 よりわかるように、L-CM ではメッシュ分割 が荒くなるほど、理論解との乖離が大きくなり、ケース3では最大 42%も解析結果の揚水量は理論解よりも多くなる。一方、RT-HM の場合、理論解との 乖離は L-CM よりも小さく、メッシュが最も粗い ケース3においても、10%程度の誤差であり、L-CM よりも精度が良いことを確認することができた。

表-3 揚水流量に対する解析精度の比較

	揚水量比率(解析結果/理論解)		
	ケース1	ケース2	ケース3
L-CM	104.8%	132.5%	142.4%
RT-HM	101.0%	106.9%	110.9%

2.4 非構造格子モデルに対する RT-HM の問題点

L-CM と RT-HM の違いは未知変数の算出位置で あり、解析結果の図化処理に対する RT-HM の水頭 コンター評価時の問題点を確認するため、非構造格 子モデルによる解析を実施した。

図-7 は紙面の右から左に流れる一様流に対して RT-HM を用いて非構造格子モデルで解析した場合 の全水頭コンター図である。RT-HM の場合、要素 中心位置での水頭値は適切に得られているものの、 図化処理すると一様流を表すコンターラインを正し く表現することができない。一般的なコンター図の アルゴリズムは節点をベースとしているためである。

RT-HM は水頭値の算出位置が要素中心および要 素境界面中心であり、節点ベースのコンター図作成 に対しては、節点位置での水頭値を正しく求める必 要がある。しかしながら、透水性の異なる内在構造 等、コンターの乱れがメッシュ分割以外に起因する 場合も有り得るため、節点位置での水頭値の算出は 容易ではない。これは、領域内の水頭値が連続し、 節点水頭値の形状関数から任意点の水頭値を補間す ることができる L-CM では発生しない問題である。 水頭値の不連続性を認めている RT-HM の解析結果 からは、解析領域内の任意点の水頭値を求めること が困難であることに注意する必要がある。

数値実験による RTHM とL-CM の比較を行った が、RTHM は非常に優れた性能を備えている反面、 L-CM では起こりえない欠点も有することが明ら かとなった。「連続するダルシー流速場を求める手法」 として RT-HM が取り上げられたが、流速ベクトル が必ずしも連続しているわけでなく、「隣接する要素 境界面の流量が連続する」ものである。この特徴は 後述する流跡線解析(4.参照)手法に対して精度の 良い流跡線を得るために有力な条件となっている。

現状では、構造格子に近いメッシュ分割の FEM モデルに対しては L-CM より適性が高い方法と言 えるが、従来の FEM に代わる手法とは言い難い。 両者の長所短所を十分把握した上で、それらを補完 するような使い分けが重要であろう。

3. L-CM 解析結果から連続流速場を求める工夫

連続的なダルシー流速場を精度よく求めるための 研究開発のもう1つが、L-CM 解析結果から連続な ダルシー流速場を求める工夫であった ⁷。従来の研 究は二次元モデルに対する検討であったため、二次 元モデルに対する確認⁹を行うとともに、三次元モ デルに対する手法の開発を行った¹³⁾。ここでは三次 元モデルに対する開発の概要について示す。

要素構成節点での全水頭、流量を未知数とする L-CM では、節点の全水頭連続性と流量の釣り合い が満足されている。言い換えると要素を構成する各 面(辺)の流量の積分値が節点流量であり、質量収 支が保たれている。一方、流速ベクトルは要素構成 節点の全水頭形状関数を微分して要素ごとに独立計 算するため、隣接要素境界面での流速ベクトルの連 続性が満足されない場合が発生する。このような L-CM の流速ベクトルを用いた流跡線解析では、不 透水境界付近や透水性が異なる境界面付近での精度 が低下するため、二次元問題に対して Cordes and Kinzelbach⁵は、要素を細分化(元となる三次元要 素に対して、ここではサブ要素と称す)し、サブ要 素への流量連続式と渦なし流れの式を適用すること で、隣接要素境界面の流量の連続性を満足させる手 法(以下、FE-CKと称す)を示し、流跡線解析の精 度向上について報告している。この手法を三次元問 題に対して拡張し、三次元 L-CM の定常解析結果に 対する流跡線解析の精度向上を図った。

図-8 に三次元モデルの例を示す。実線は三次元 モデルの要素境界であるが、FE-CK では隣接要素境 界面の流量算出にあたり、節点で積分された流量が 分担する隣接要素境界面の面積に合わせて分割した サブ要素を用いる。図-8 の破線は分割されたサブ 要素の境界を表している。

図-8 三次元モデルとサブ要素の関係

ここで図-8 に示した三次元モデルの中央部の節 点に着目し、節点周りのサブ要素を抽出した結果を 図-9 に示す。三次元モデルの六面体要素、五面体 要素はそれぞれ8および6分割され、ともにサブ要 素の形状は六面体となる。また、ここでは隣接する サブ要素境界面の流量をパッチ流量と称することと する。

次に抽出した三次元モデルの中央部節点周りの流 量の釣り合いを考える。図-10にはサブ要素群の下 段における流量の関係ついて示した。ここでQn^eは 三次元モデルにおける要素nの節点流量(スカラー 量)であり、Qn^{ee}はサブ要素nのパッチ流量(スカ ラー量)を表している。それぞれのパッチ流量の黒 矢印の方向は、各サブ要素における正の流量の方向 を表している。

定常状態での中央節点周りの流量の連続式は以下 となる。

(中央節点における節点流量)

$$Q_{1^{e}}+Q_{2^{e}}+Q_{3^{e}}+Q_{4^{e}}+Q_{5^{e}}$$

 $+Q_{6^{e}}+Q_{7^{e}}+Q_{8^{e}}+Q_{9^{e}}+Q_{10^{e}}=0$ (1)

(サブ要素の下段)

 $\begin{array}{l} Q_{5}^{ce} - Q_{1}^{ce} - Q_{6}^{ce} = Q_{1}^{e} \\ Q_{1}^{ce} - Q_{2}^{ce} - Q_{7}^{ce} = Q_{2}^{e} \\ Q_{2}^{ce} - Q_{3}^{ce} - Q_{8}^{ce} = Q_{3}^{e} \\ Q_{3}^{ce} - Q_{4}^{ce} - Q_{9}^{ce} = Q_{4}^{e} \\ Q_{4}^{ce} - Q_{5}^{ce} - Q_{10}^{ce} = Q_{5}^{e} \end{array}$

(サブ要素の上段)

$$Q_{15^{ce}}-Q_{11^{ce}}+Q_{6^{ce}}=Q_{6^{e}}$$

 $Q_{11^{ce}}-Q_{12^{ce}}+Q_{7^{ce}}=Q_{7^{e}}$
 $Q_{12^{ce}}-Q_{13^{ce}}+Q_{8^{ce}}=Q_{8^{e}}$
 $Q_{13^{ce}}-Q_{14^{ce}}+Q_{9^{ce}}=Q_{9^{e}}$
 $Q_{14^{ce}}-Q_{15^{ce}}+Q_{10^{ce}}=Q_{10^{e}}$ (2)

式(2)のうち、1つは線形・独立の式とはならない ため、式は9つとなるが15の未知変数を解くため には条件式が足らない。そのため渦なし条件を追加 する。図-11に中央節点を端点とする7本の要素辺 を太破線で示す。この7本の要素辺を中心として接 続するサブ要素に関して渦なし条件式を追加するこ とができる。未知変数15個に対して連続式が9式 であることから、渦なし条件から線形・独立な6つ の方程式を追加することにより未知数を解くことが できる。

図-11 渦なし条件設定のための中心線位置

FE-CK は、三次元モデルの隣接要素間流量を全て 求めることにより、RT-HM と同様に RT 補間法を 用いた流跡線解析(4.参照)を行うことができるこ とになる。なお、本手法の詳細は、菱谷ら¹³⁾が詳し く報告している。

FE-CKの場合、前述の図-4に示した一様流に対 しては、要素形状の違いに関係なく適切な流量を算 出できることを確認した。一方、図-6に示した被 圧井戸問題については、L-CM解析結果の流量に基 づいているため、RT-HMのような流量の改善は認 められない。すなわち、FE-CKによる隣接要素境界 面の流量計算の精度は、L-CM解析結果の節点流量 に基づいていることから、L-CM解析結果の節点流量 に基づいていることから、L-CM解析結果からRT 補間法による流跡線解析の精度向上を図る手法であ り、FEM解析自体の精度向上を図るものではない ことに注意する必要がある。

4.RT 補間を用いた三次元流跡線解析手法

ここでは要素境界面流量を用いて要素の内の流動 軌跡(流跡線)を精度よく求める手法について紹介 する。

従来の L-CM 解析結果による流跡線解析では、一 般に有限要素重心点で求められた流速ベクトルから ルンゲ・クッタ法のような数値積分手法を用いて算 出されていた。このため流跡線の解析結果は、積分 時の流速の空間分布密度や時間ステップ間隔の影響 を受けていた。これに対して RT-HM や FE-CK で は隣接要素境界面で連続した流量が得られることか ら、隣接要素境界面流量と要素内の RT 補間関数を 組み合わせることで要素内任意点での流速ベクトル を一次多項式で近似することができる。この流速近 似式を用いることで要素内の流跡線を積分式として 厳密に求めることができることになる。なお、本手 法の詳細については、菱谷ら¹³⁾が詳しく報告してい る。

4.1 流跡線解析事例(その1)

ここでは、流跡線解析の精度に関する検討事例¹³⁾ を紹介する。モデル領域内において透水性が大きく 異なる流動場に対する流跡線解析精度を確認するた め、Mosé ら¹⁹⁾の二次元検討モデルを用いた。図-12 に解析条件を示す。

図-12 Moséらの二次元検討モデル解析条件 19)

本検討モデルは、透水係数で5乗の差異がある難 透水性領域を含んでおり、難透水性領域を1要素で モデル化した縦横25分割(1要素の大きさ:4m× 4mの正方形)のメッシュを作成し、モデル上面か ら下面への定常流動場をL-CMとRT-HMで求めた。 流跡線解析にあたっては、L-CMの流速評価結果に 従来のルンゲ・クッタ法を用いた場合と、RT-HM とFE-CKの結果にRT補間法を用いた場合につい て比較を行った。図-13に各ケースの流跡線解析結 果の比較を示す。

図-13(a)より、L-CM 解析結果+ルンゲ・クッタ法 の場合、難透水性領域を通過する流跡線が得られて いることがわかる。この要因は難透水性領域近傍の 流速ベクトル成分の評価精度が低下していることに よる。一方、図-13(b),(c)のようにRT 補間法を用 いた流跡線解析結果は、難透水性領域を迂回する流 跡線が得られるとともに、RT-HM と FE-CK の結果 はほとんど同じであった。これより、L-CM 解析結 果に対して FE-CK を適用すれば、RT-HM と同程度 の精度の流跡線解析が可能になることが確認できた。

4.2 流跡線解析事例(その2)

FE-CK による流跡線評価の例として、図-14 に 示す不均質場を対象としたテスト¹⁹⁾を実施した。

解析条件は図-12 と同じであり、縦横 10 分割し た各要素に透水性が与えられている。Mosé ら ¹⁹に よると図-14 の○印の部分で、RT-HM と FE-CK の流跡線の違いが指摘されている。そこで、L-CM 解析結果から FE-CK と RT 補間法を用いた流跡線 解析を行った結果を図-15 に示す。

図-15 FE-CK による流跡線図

図-15 の○印に見られるように、高透水部から低 透水部を通過する流跡線が得られた。RT-HM の結 果を用いた場合、このような流跡線にはならない。

L-CM は節点で評価しており、高透水部と低透水 部が節点のみで区切られる場合、あるいは低透水部 が隣接要素境界面で連続していない場合には、図-15 のように高透水部から高透水部への流動が発生 する。L・CM では節点での流量が連続するため、図 -14 の○印付近の透水性が大きい白い要素は流動 的につながっている結果が得られる。一方、RT・HM では隣接要素間の流量の連続に基づくため、節点で のみつながっている白い要素間の流動は発生しない。 このようにL・CM と RT・HM では○印付近の要素内 の流速ベクトルの解析結果が異なるため、流跡線解 析結果が異なることになる。L・CM の場合にこのよ うな現象を回避するためには、例えば低透水部が隣 接要素境界面で連続するモデル化が必要であり、図 -14 に示したような解析モデルは L・CM 解析には 不適切であると言える。逆に RT・HM では、節点で のみ連続した低透水部であっても、低透水部の連続 性が考慮された解析結果を得ることができるため、 モデル化の際の優位性の一つと考えられる。

5.おわりに

本報告では、放射性廃棄物処分に対する地下水流 動解析にあたって、放射性核種の移行時間や移行経 路予測の精度向上を図るため、連続的なダルシー流 速流場を精度良く求めることができる解析手法につ いて、既存研究の調査、プログラム開発、数値実験 による基本性能テストを行った結果を紹介した。

従来から用いられていた節点での水頭値のみを未 知変数とする FEM (L-CM)の問題点を解消する解 析手法として、RT 混合補間法を利用した FEM (RT-HM)の二次元および三次元モデル解析手法を 開発し、数値実験を行った。その結果からは、「連続 したダルシー流速場」を求める、というよりも、隣 接要素間の流量の連続性を確保することにより、RT 補間法を用いた流跡線解析の精度向上を図ることが できる手法であることが明らかとなった。同様の考 え方により、L-CM 解析結果から隣接要素間の流量 の連続性を満足させる手法(FE-CK)を用いること により、L-CM 解析結果に対しても流跡線解析の精 度向上を図ることができることを確認した。

一方、従来二次元問題のみで検討されていた RT·HM に対して、解析手法を三次元に拡張したこ とにより、要素形状に対する制約条件を有すること が明らかとなった。FEM は任意の要素形状を適用 することができ、複雑な三次元モデル解析に有効と 考えられてきたが、L·CM では発生しない問題点が 明らかとなったことにより、実用上RT·HMがL-CM に変わる解析手法と判断することも難しいことがわ かった。

本報告の解析対象は地下水流動のみであり、安全評価のための放射性物質の移行挙動に関しては、別

途一次元モデルを用いて予測することが前提となっ ている。今後、放射性廃棄物処分施設の合理的な設 計に資するためには、放射性核種の移行挙動を直接 解析的に予測することが望ましい。一方、地下水流 動解析の対象となる地盤、岩盤は不均質であり、不 確実性の高い媒体であることから、予測解析のため のモデル化や確からしさの検証が困難とされている。 超長期間の将来を対象とした予測解析は、気候変動 や地形の変化、水理パラメータの時間変化などが想 定されるため、予測の妥当性を説明することはさら に困難となる。近年着目されている工学シミュレー ションに対する V&V への対応を踏まえ、超長期間 の予測解析の精度向上のためのアプローチ方法は今 後の大きな課題であるものの、原子力発電の恩恵を 受けてきた我々世代は、将来世代に対して安全な放 射性廃棄物の処分を行うことが責務であろう。候補 地選定にあたって、国が主導的に取り組む高レベル 放射性廃棄物処分を含めて、適切な放射性廃棄物処 分施設の実現に向けて、ゼネコンとしては今後も解 析技術の高度化だけでなく、さまざまな課題に取り 組む必要がある。

謝辞

本報告内容は共同研究成果であり、弊社の櫻井英 行氏、郷家光男氏、山田俊子氏、(株)ダイヤコンサ ルタントの菱谷智幸氏、山浦昌之氏、鹿島浩之氏に は多くの協力を頂きました。また、「地下水流動解析 手法の高度化勉強会」に御参加頂いた岡山大学の西 垣誠名誉教授ほか多くの関係各位にご指導・ご助言 を頂きました。ここに深く感謝いたします。

<参考文献>

- 白石知成,佐々木泰,進士喜英,菱谷智幸:"堆積岩を対象 とした地下水流動解析モデルの構築および妥当性確証検討", 第54回地盤工学シンポジウム 平成21年度論文集,pp.9-16, 2009.
- 2) 青木広臣,鈴木俊一,下村雅則,川上博人:"混合化形式有 限要素法による放射性廃棄物処分施設を対象とした地下水 流動解析",土木学会論文集 C, 67 (4), pp.453-463, 2011.
- 3) 赤堀邦晃,山口耕平,小松 喬,櫻井英行,菱谷智 幸:"Raviart-Thomas 補間を導入したハイブリッド FEM による基本性能解析及び例題解析",日本地下水学会 2012年 春季講演会講演要旨,pp.36-41, 2012.
- 4) 森川誠司,並川 正,川端淳一,羽根幸司,櫻井英行,白石 知成,郷家光男,菱谷智幸:"放射性廃棄物処分坑道を対象 とした3次元地下水流動解析における各種解析手法の比較", 日本地下水学会2012年春季講演会講演要旨,pp.42-45,2012.
- 5) Matringe, F.S., R. Juanes and A.H. Tchelepi :"Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids.", Journal of Computational Physics, 219(2), pp.992-1012, 2006.

- Younes, A., P. Ackerer and F. Delay : "Mixed finite elements for solving 2-D dif fusion-type equations.", Reviews of Geophysics, 48, RG1004, 2010.
- Cordes, C. and W. Kinzelbach: "Continuous groundwater velocity field and path lines in linear, bilinear and trilinear finite elements.", Water Resources Research, 28(11), pp.2903-2911, 1992
- Raviart, P.A. and J.M. Thomas: "A mixed finite element method for second order elliptic problems.", Lecture Notes in Mathematics, 606, pp.292-315, 1977.
- 9) 白石知成,櫻井英行,菱谷智幸,山浦昌之,谷藤眞一郎:"CK 法による FEM 地下水流動解析結果からの流量算出法の考察",日本地下水学会 2011 年春季講演会講演要旨, pp.10-15、2011.
- 10) 櫻井英行, 郷家光男, 白石知成, 菱谷智幸, 山浦昌之, 鹿島 浩之:"三次元浸透流問題における Raviart-Thomas 補間関 数の精度検証", 日本地下水学会 2012 年秋季講演会講演要 旨, pp.178-183, 2012.
- 11) 櫻井英行,郷家光男,白石知成,菱谷智幸,山浦昌之,鹿島 浩之: "Raviart-Thomas 混合補間を用い有限要素の三次元 浸透流問題における基本性能",土木学会論文集 A2, 69(1), pp.30-40, 2013.
- 12) 櫻井英行, 郷家光男, 白石知成, 菱谷智幸, 山浦昌之, 鹿島 浩之:"Raviart-Thomas 混合補間を用いた三次元有限要素 モデルと基本性能",地下水学誌, 第56巻第3号, pp.225-236, 2014.
- 13) 菱谷智幸,鹿島浩之,櫻井英行,白石知成:"有限要素法による地下水流動解析における流れの局所連続性に関する考察",地下水学誌,第57巻第3号,pp.319-334,2015.
- 14)小野誠,鈴木俊一,八木啓介,井尻裕二:"地下水流動に関 する諸問題への混合型有限要素法への適用",地下水学誌, 第56巻第3号,pp.213-224, 2014.
- 15) 白石知成, 佐藤春香: "井戸理論解との比較によるFEM解 析モデルのメッシュ分割影響に関する検討", 土木学会第64 回年次学術講演会, Ⅲ-297, pp.593-594, 2009.
- Kono, Iichiro: "The equivalent radius of a source in numerical models of groundwater flow", Proc. of JSCE, No.218, Oct., pp.103-107, 1973.
- 上村佳司, 榊利博, 田中良弘:"浸透流解析における井戸の モデル化に関する一考察"、土質工学研究発表会、 pp.2245-2246, 1993.
- 18) 山田俊子, 櫻井英行, 鈴木誠: "有限要素法を用いた浸透流 解析における注水・揚水孔の実用的な簡易モデル", 土木学 会論文集 C, 71(4), pp.407-417, 2015.
- 19) Mosé R., P. Siegel and P. Ackerer :"Application of mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?", Water Resources Research, 30, 11, pp.3001-3012, 1994.