19

Earthquake Response Based Design of Combined Hysteresis Dampers

by Tetsuya Hanzawa and Yutaka Nakamura

半澤

徹也

(技術研究所)

Abstract

This paper proposes a method of earthquake response based design of combined hysteresis dampers. The proposed damper consists of a elasto-plastic damper and a friction damper. The damper is designed such that every peak inter-story drift for the designated great earthquake would coincide with the specified value, and the peak acceleration of the selected floor for designated moderate quake would be lower than the specified value. The response analyses were carried out for the building models with the combined hysteresis dampers to confirm the validity of the proposed design method.

概 要

鋼材ダンパーと摩擦ダンパーを並列に配置した複合ダンパーの設計法を提案し、その妥当性に関する検討を行った。複合化 の狙いは、極希な巨大地震による構造躯体の変形を一定以下に押さえるための主要なダンパーを鋼材ダンパーとして設計し、 さらに、より発生頻度の高い小地震に対して、室内被害の防止や居住性の改善のために小さな変位から制震効果を発揮するよ うに摩擦ダンパーを用いるというものである。提案した複合ダンパー設計法により、鋼材ダンパーのみの制震システムモデル に比べて、より小さな入力レベルに対しても加速度低減効果のある制震システムが得られることがわかった。

§ 1. はじめに

近年、制震デバイスを付加した制震構造が多く建設されている。制震デバイスには鋼材ダンパー、摩擦ダンパーなどの変位依存型(履歴型)ダンパーや、粘性ダンパー、粘弾性ダンパーなどの速度依存型ダンパーがある。 最近では、各種ダンパーの欠点を補うために異なる種類のダンパーを組合わせた複合ダンパーも開発されている。 既往の文献では、複合ダンパーの性能に関する理論的および実験的研究¹⁾⁻⁴⁾や、1質点系制震システムについての 理論的研究がなされているが^{5,6)}、多質点系における複合 ダンパーの設計法に関する研究は少ない。

本論では、極希な巨大地震に対して構造躯体の層間変 形角を一定値以下に抑えるための主要制震デバイスとし て鋼材ダンパーを設計し、より発生頻度の高い中小地震 に対して室内被害の防止・軽減や居住性の改善を目的と して応答加速度を低減するために摩擦ダンパーを複合さ せる場合のダンパーの設計法を提案し、その妥当性につ いて検証する。以下、鋼材ダンパーを EPD (Elasto-Plastic Damper)、摩擦ダンパーを FD (Friction Damper)、それら の複合ダンパーを EPFD と表す。 本論で対象とする主架構の構造形式は鉄骨造であり、 建物モデルは多質点せん断型モデルとする。設計用地震 動は平滑化された加速度応答スペクトルと減衰による応 答低減率で定義する。ダンパーの設計法は応答評価とダ ンパー諸元(設計変数)の更新の過程からなる。ダンパ ーの復元力特性をバイリニアでモデル化し、等価線形化 法を用いて線形化した後、モーダル法によって最大応答 量を評価する。次に応答制約値と応答評価値の比に基づ き設計変数を更新することにより、収斂値としてダンパ ーの諸元を定めるものである。多質点系の制震システム に対する層剛性やダンパー量の設計に関する既往の研究 では層間変形角を対象としたものが多いが^{7,99}、本論では 層間変形角の他に応答加速度も制御対象にしている。

§ 2. 複合ダンパーの特性

本論で想定する EPFD の構成と力学特性について述べる。EPD と FD の複合化には様々なディテールが考えられるが、その例を図-1に示す。これは溝形鋼で鋼材ダンパーの芯材を補剛したアンボンドブレース型鋼材ダン

パー(EPD)¹⁰に対して、座屈防止用の補剛材の仕口部に 摩擦ダンパー(FD)を設置したものである。FD は、摩 擦材と滑り材をボルトで圧接させた機構となっている。 力学モデルは図-2のようになる。EPD の耐力は芯材の 降伏応力と狭幅部の断面積で与えられ、狭幅部と拡幅部 のそれぞれの長さや断面積比により、EPD 全体の剛性が 求められる。EPD の降伏変位は鋼材種と狭幅部の長さお よび拡幅部の剛性で決まる。ただし、最大変形時の歪は 低サイクル疲労破断防止の観点から 2%~3%程度あるい はそれ以下に制約され、これによって狭幅部の長さが決 まる。FD 自体の剛性は一般に非常に大きいので、直列接 合されている補剛材の剛性が FD 部の剛性となる。図-1 の複合ダンパーについて、FD 部の剛性を試算すると無理 なく EPD の 1.5~3.0 程度の剛性を与えることができる。

この様な EPFD について、小変形時には FD が、大変形 時には主として EPD が振動エネルギーを吸収するように 構成することを考える。すなわち、大地震に対しては EPD を、小地震に対しては FD を制震ダンパーとして用いる。 ただし、大地震用に設計された EPD の負担力に単純に FD の負担力を加算すると、接合部の設計や応答加速度に影 響を与える可能性がある。そこで、極希な大地震に対し て設計された EPD の耐力は一定とし、FD を付加する際 には、FD を付加した分、EPD の耐力を低下させ、ダンパ 一全体の耐力が一定となるようにする。

次に、EPFD 単体に主架構の剛性を加えた EPFD システ ムの力学特性について述べる (図-3)。極希な大地震に 対して設計される EPD の降伏変位を δd_2 、割線剛性を Kd_{20} とすると、耐力は次式で与えられる。

 $Qd_{20}=Kd_{20} \delta d_2$ · · · · · · · · (1) 芯材の狭幅部と拡幅部の板厚が同じ場合、 δd_2 は狭幅部 と拡幅部の幅および長さの比と鋼材の種類で決まり、こ れらの諸元は鋼材の歪硬化や低サイクル疲労防止に関係 して定まる。そのため、地震時の変位制約に対する EPD の設計では δd_2 は一定とし、耐力の変更は EPD の剛性の 変更で行う。FD の剛性 Kd_1 および耐力 Qd_1 は次式のよう に表現する。

 $Kd_{l} = \gamma Kd_{20} \qquad \cdots \cdots \cdots \cdots (2)$ $Qd_{l} = \alpha Qd_{20} \qquad \cdots \cdots \cdots \cdots (3)$

図-3 複合ダンパーの荷重変形関係

前述の通り、FD 部の剛性は EPD の 1.5~3.0 程度の剛 性とすることができるので、ここで γ は一定とする。す ると FD の滑り出し変位 δd_l は次式となる。

 $\delta d_l = Q d_l / K d_l = \alpha / \gamma \delta d_2$ ・・・・・・・(4) 前述したように上記の FD を付加したときもダンパー 全体の耐力が一定となるように、EPD の耐力 $Q d_2$ および 剛性 $K d_2$ を次式によって変更する。

$Qd_2 = (1 - \alpha) Qd_{20}$	$\cdots \cdots \cdots (5)$
$Kd_2 = Qd_2 / \delta d_2 = (1 - \alpha) Kd_{20}$	•••••(6)
図-3に示す EPFD の荷重変	形関係のトリリニアカー
「における折れ点の耐力は次式	で与えられる。

 $F_{I} = Qd_{1} + Kd_{2} \,\,\delta \,d_{I} = \alpha (\gamma + 1 - \alpha) / \gamma Qd_{20} \quad \cdot \quad \cdot \quad \cdot \quad (7)$ $F_{2} = Qd_{20} \qquad \qquad \cdot \quad \cdot \quad \cdot \quad (8)$

初期剛性 Kdoおよび2次剛性比pは次式となる。

 $Kd_{0}=F_{1}/\delta d_{1}=(\gamma+1-\alpha)Kd_{20}$ ・・・・・・・(9) $p=(F_{1}-F_{2})/(\delta d_{2}-\delta d_{1})/K_{0}=(1-\alpha)/(\gamma+1-\alpha)$ ・・・(10) 変位が $\delta d_{1}<\delta<\delta d_{2}$ の場合、幾何学的等価剛性 Kd_{eq} お よび幾何学的等価減衰定数 hd_{eq} は次式で与えられる。

 $Kd_{eq} = Kd_{20}\{(1 - \alpha) \,\mu d_{l} + \gamma \} / \,\mu d_{l} \cdots \cdots \cdots \cdots (11)$ $hd_{eq} = \{2 / (\pi \,\mu d_{l})\} \{ \gamma (\mu d_{l} - 1)\} / \{ \gamma + (1 - \alpha) \,\mu d_{l} \}$ $\cdots \cdots (12)$

ここで、 μd_l は δd_l を基準とする塑性率であり、次式となる。

 $\mu d_{I} = \delta / \delta d_{I}$ 変位が $\delta d_{2} < \delta \sigma$ 場合、 $Kd_{eq} \geq hd_{eq}$ は次式で与えられる。 $Kd_{eq} = Kd_{20} \gamma / (\alpha \mu d_{I})$ ·······(14) $hd_{eq} = \{2/(\pi \mu d_{I})\}(\gamma - \alpha - \gamma / \alpha + \mu d_{I})$ ·····(15)
ダンパーの塑性率を δd_{2} を基準にする場合は $\mu d_{I} = \gamma / \alpha \mu d_{2} \geq \tau$ る。

弾性主架構の剛性をKf、減衰定数をhfとすれば、EPFD システムの特性は以下となる。

 $K_{eq}=Kf+Kd_{eq}$ ・・・・・・(16)

 $h_{eq}=hf+Kd_{eq}/(Kd_{eq}+y)hd_{eq}$ ・・・・・・(17)

 システムの等価減衰定数 h_{eq} のダンパー塑性率 μd_2 に対す

 る変化を図-4に示す。ここでは簡単のため、hf=0とし

 ている。 $\gamma=1.5$ とし、最初の EPD の剛性と主架構剛性の

 比 $\xi= Kd_{20}/Kf \ge 1.0, 2.0, 4.0 \ge 0.7 a \ge 0$ から 0.2 まで

 変化させている。a=0の時、 $\mu d_2<1$ では h_{eq} が 0 となる。

 aが大きくなると、特に $\mu d_2=0~1$ の領域で h_{eq} が大きく

 なってくる。しかし、 $\mu d_2=1$ より大きな変位領域では h_{eq}

 は aに影響を受けなくなる。また、 ξ が大きい方が h_{eq} が

 全体として大きくなる。

次に、 ξ =2.0、a=0.2 で、 γ を変化させた場合の h_{eq} を 図-5に示す。変位が小さな領域では γ が大きい方が h_{eq} は大きくなる。しかし、 μd_2 =1 付近では γ >1.5 程度であ れば、 $\gamma O h_{eq}$ への影響は小さい。

§ 3. 多質点系における EPFD の設計法

本論で提案する EPFD の設計法の特徴は以下である。

- ① 極希な巨大地震に対して構造躯体の層間変形角を一 定値以下に抑えるためにEPDを設計し、これを元に、 より発生頻度の高い中小地震に対して応答加速度を 低減するためにFDを複合させたダンパー(EPFD) を設計する。
- ② ダンパーの設置量(設計変数)を求めるために、応答の推定と設計変数の更新の過程を繰り返す収斂計算を行う。
- ③ 設計用地震動は平滑化された応答スペクトルと減衰 による応答低減効果式により設定する。
- ④ 応答の推定は多質点系に対するモーダル法による。

EPD および FD は等価線形化法により線形化する。 モーダル法としては拡張 CQC 法^{11,12)}を用いる。

⑤ 更新の過程は次の通りとする。長周期帯ほど加速度 スペクトルの値が低下するような、平滑化されたス ペクトルに対する一質点系の応答変位については、 ダンパーの設置量が多いほど低減される傾向がある ¹³。また、ある層の層間変形角はその層に設置された ダンパーの設置量に大きく影響される。そこで、層 間変形角については、推定応答量と目標値との比に 応じて設計変数を更新するものとする。一方、応答 加速度については、ある層の応答量がその層のダン パーの設置量のみには依存せず、層間変形角と同様 の変数更新は適当でない。そこで、代表点(例えば 等価高さに近い節点)の応答を対象として、それが 最も小さくなるような設計変数を探査する。

計算の手順は以下のようになる。

- <1> 構造躯体のせん断型モデルの諸元を既知として、極 希な巨大地震(レベル2)に対して構造躯体の層間変 形角が指定値以下になるように EPD を設計する。
- <2> より発生頻度の高い小地震(レベル0と呼称)に対して構造躯体の代表点の応答加速度を最小にするようにFDを付加する。

<2>により、レベル2での層間変形角が目標値より小さくなる場合には、<1>の手順を再度実施することも考えられる。しかし、その結果、<2>より吸収エネルギーが減れば、レベル0での加速度が増加することが考えられる。本論では、EPDに対してFDを付加的なものと考えているので、再計算は行わないこととする。以下、各手順について詳述する。

3.1 レベル2に対する EPD の設計

レベル2による応答層間変位が、指定した層間変位の 制約値以下になるようにEPDを設計する。EPDは降伏変 位を指定するものとし、設計変数は初期剛性値とする。

地震力は平滑化された応答スペクトルを前提としている。本節で用いるレベル2設計用加速度応答スペクトル は、センター波レベル2の加速度応答スペクトルを参考とし、その1.2倍の応答スペクトルに相当するものとしている((18)式)。また、精度の確認のための動的解析には、この応答スペクトルに対して作成された模擬地震動を10波を用いる¹⁴⁾。応答スペクトルと模擬地震波形を図ー6に示す。模擬地震動10波の最大加速度値は432~515galとなっている。本節では、動的解析による精度の検証のために、減衰による応答スペクトルの低減効果式(D_h 式)は、模擬地震動0 D_h 式は凹凸のある実地震波の D_h 式に比べて低減効果が大きい傾向が指摘されている¹⁵⁾。実際の設計においては、スペクトルはサイトの表層地盤によ る増幅効果を考慮し、D_h式は実地震波のD_h式を用いるの が妥当であると考えられる。この場合については、6節で 検証する。本論で採用する設計用加速度スペクトル (*h*=0.05) は次式で与えられる。

Sa(*T*,*h*=0.05)=1480*T*+406 (*T*<0.05sec)

=4800T+240	(0.05 <t<0.2se< th=""><th>c)</th></t<0.2se<>	c)
=1200	(0.2< <i>T</i> <0.64se	ec)
=768/T	(0.64sec <t)< td=""><td>(単位 cm/sec²)</td></t)<>	(単位 cm/sec ²)
		(18)

この応答スペクトルをターゲットとして作成した10波 の模擬地震動に対して減衰h=2,3,5,8,10,12,15,18,20,22, 25,28,30,32,35,38,40%の変位応答スペクトル Sd(*T*,*h*)と 加速度応答スペクトル Sa(*T*,*h*)を求め、 D_{hd} =Sd(*T*,*h*)/Sd (*T*, 0.05)、 D_{ha} =Sa(*T*,*h*)/Sa(*T*,0.05)を算出する。変位応答スペク トルについては、 D_{hd} の*T*=0.2~3.0秒(データ数219 点) における平均値を求め、 D_{hd} 式は次式で表せるものとして、 最適な *a* を決定し *a*=228 とした。*T*=0~0.2 秒は (*T*, D_{hd})=(0,1)を通る直線とした。

 $D_{hd} = (\sqrt{[(1+0.05 \alpha)/(1+\alpha h)]} - 1)5T + 1 \quad (T < 0.2 \text{sec})$

= $\sqrt{[(1+0.05 a)/(1+ah)]}$ (0.2<T<3.0sec)・・・(19) 加速度応答スペクトルについては、変位の応答低減効 果に比べるとやや性状が異なっており、T=0.2~1.0 秒間 は、その区間の平均値(データ 129 点)に対して算出し た低減効果値 $D_{ha}=Sa(T,h)/Sa(T,0.05)$ で一定とし、T>1.0 秒 では、T=3.0 秒で T=2.5~3.0 秒(27 点)で平均した値に 対して算出した低減効果値になるように直線的に変化さ せた。また、T=0~0.2 秒は(T, D_{ha})=(0,1)を通る直線とした。 D_{ha} は次のように表される。

$$\begin{split} \mathbf{D}_{\text{ha}} &= ([(1+0.05 \ \alpha)/(1+\alpha h)]^{0.4145} - 1)5T + 1 & (0 < T < 0.2 \text{sec}) \\ &= [(1+0.05 \ \alpha)/(1+\alpha h)]^{0.4145} & (0.2 < T < 1.0 \text{sec}) \end{split}$$

= $[(1+0.05 \alpha)/(1+\alpha h)]^{0.4145}$ (3-a₀+(a₀-1)T)/2(1.0<T<3.0sec)

 $\Box \Box l \Box$, $\alpha = 472310$, $a_0 = \exp[0.0276(h_{eq}/h_0-1)] \cdot \cdot \cdot (20)$

求められた D_{hd},D_{ha}式を図-7に示す。Sa については長 周期領域で高減衰時の応答低減効果が小さくなっている。

次に最大応答値の計算法を述べる。設計用応答スペク トルに対して層間変形角を制約した EPD の設計は既往の 研究にも見られるが^{7,8}、本論で採用する方法は、次節で 述べるように応答加速度の推定まで意図しているので、 減衰および高次モードの扱いに特徴がある。

主架構躯体の振動方程式を以下のように表す。

 $Mf\ddot{x} + Cf\dot{x} + Kfx = -Mf\ddot{y} \qquad \cdots \qquad \cdots \qquad (21)$

ここに、 M_f : 主架構の質量マトリクス、 C_f : 主架構の 構造減衰係数マトリクス、 K_f : 主架構の剛性マトリクス である。実施設計では剛性比例型減衰が採用される場合 が多いが、実測された減衰定数によると、剛性比例型減 衰では高振動数領域で過大評価となる場合がある¹⁶。1 次モードの影響が大きい応答変位の推定では高次モード の影響は少ないが、本論では次節で述べるように応答加 速度も推定対象にするので、躯体の減衰は Rayleigh 減衰 とし、躯体の1次および2次の固有周期に対して2%とし て C_f を作成する。

図-7 検証用地震動の減衰による応答低減効果

EPD はバイリニア型(二次剛性係数 p=0.001)としてモ デル化し、等価線形化による複素剛性として表現する。 既往の研究¹⁵⁾では、EPD を有する一質点系制震システム に対しては、最大変位による等価剛性(幾何学的等価剛 性)と積分平均による減衰定数(Newmark-Rosenblueth 式) による等価線形化法により、地震応答変位を精度良く推 定できるとされている。ダンパーについては、塑性率を μd_2 とすれば(基準値は EPD の降伏変位)等価剛性と等 価減衰定数は次式となる。ここにpは EPD の2次剛性比。

 $Kd_{2ea} = Kd_2 \{1 + p(\mu d_2 - 1)\}/\mu d_2$... (22)

 $hd_{2eq} = 2/(\pi \ \mu d_2 p) \ln[\{1 + p(\mu d_2 - 1)\} / \ \mu d_2^p] \cdot \cdot \cdot (23)$

ダンパーをこれらの物性を持つ Voigt モデルでモデル 化すると、高次モードでの減衰定数が低次に比べて大き く評価される。しかし、履歴型ダンパーの吸収エネルギ ーは振動数に無関係である。そこで本論では、上式を用 いて EPD の複素剛性を以下のように表現する。ここに、 i は虚数単位。

 $Kd_2^* = Kd_{2eq}(1+2i hd_{2eq})$ ・・・・・(24) Foss の方法¹⁷⁾に従い、EPD の設置された主架構につい て次の一般固有値問題を得る。ただし、ここではマトリ クス B は複素マトリクスである。

 $(\lambda A + B)v = 0 \qquad \cdots \qquad (25)$ $A = \begin{bmatrix} 0 & Mf \\ Mf & Cf \end{bmatrix}, \qquad B = \begin{bmatrix} -Mf & 0 \\ 0 & K^* \end{bmatrix}, \qquad K^* = Kf + Kd_2^*$ $\cdots \qquad (26)$

これを解いて複素固有値および複素固有ベクトルを求 める。各モードからの変位応答の合成には拡張 CQC 法 ^{11,12)}を用いる。

次に、本論での EPD の等価線形化法について述べる。 これまでの等価線形化に基づくモーダル法による応答評 価に関する既往の研究では、EPD に生じる最大変位で等 価線形化した等価剛性に基づく固有値解析を行い、各モ ードの重ね合わせにより最大応答値を評価している。し かし、最大応答値を各モードの重ね合わせで評価するモ ーダル法の概念からすると、高次振動の振幅は小さく、 ダンパーが塑性化するレベルとは必ずしも言えない。そ こで、*i* 次モード(*i*=1~n、n:考慮する次数)の変位成 分に応じて EPD の等価線形化を行い、固有値解析を実施 して、*i* 次モードを、変位成分の値が収斂するまで繰り返 して評価する。この方法は、既往の文献¹⁸⁾と類似してい るが、既往の文献が 6 層の非制振 RC 造を対象としてい ること、SRSS 法を採用していること、等価減衰定数の定 義が異なること等の相違がある。

上述の手続きはEPDの高次モードにおける効果を反映 させたものであり、文献18)に倣って前者をマルチモード と呼ぶことにする。最大変位で等価線形化した等価剛性 に基づく固有値解析によって各モードを評価する従来の 方法をシングルモードと呼び、比較して論じる。

マルチモードによる方法で求められた最大応答に対し て、設計変数(EPD の初期剛性)は以下のように更新す るものとする。

 $Kd_{2jnew}=(\delta_j/\delta_{j_target})^{\beta^I}Kd_{2jold}$ (j=1,2,...,N)・・・・(27) β_I は、本論での検討では 0.5~0.8 程度の値を採用した。 一般的にはダンパーの設置量を増加させれば応答変位は 低下するので、上記の更新方法で良好な収斂が得られる。 以上の計算フローを図-8に示す。

3.2 レベル0地震力に対する摩擦ダンパーの設計

発生頻度の高い小地震をレベル0とし、設計者が与え ることにする。レベル0地震力に対して、加速度が最小 となるようなFDの設置量を求める。2節で述べたように、 FDの設計変数は、前節で求めたレベル2地震力用 EPD の負担力に対するFDの負担力の比αとする。αは全層で 同じ値とする。

レベル0としては、レベル2の地震力と別に定義して も良いが、ここではセンター波レベル2相当のスペクト ルを0.2倍したものと設定する。検証用の入力地震動も、 前節の模擬地震動を0.2/1.2=0.167倍したものを用いる。

制震システムの応答評価法は前述と同様であり、全体 の剛性マトリックスを次式とすればよい。

K*=Kf+Kd1^{*}+Kd2^{*}・・・・・(28)
ただし、加速度の推定においては、減衰定数を幾何学的
減衰として次式を採用している。ここにpはダンパーの2
次剛性比である。

 $hd_{leq}=2(1-p)(\mu_{dl}-1)/([\pi \mu_{dl} \{1+p(\mu_{dl}-1)\} \cdot \cdot \cdot (29))$ これは、数値解析の結果、Newmark-Rousenblueth 式²¹⁾ では加速度応答を過大評価する可能性があると判断した ためである。

レベル 2 地震力に対して設定された EPD の負担力を Qd_{20} 、剛性を Kd_{20} とする。FD の剛性は $Kd_{f}=\gamma Kd_{20}$ とし て固定する。 γ は設計者が各層毎に与えても良いが、簡 単のため本論では各層一律に与える。**図-1**のようなデ ィテールであれば $\gamma=2.0$ 程度は無理なく実現できる。レ ベル0 地震力に対しては、FD の負担力を $Qd_{f}=aQd_{20}$ 、そ れにともなって鋼材ダンパーの負担力を $Qd_{2}=(1-a)$ Qd_{20} に変更する。EPD の降伏変位 δd_{2} は設計者が各層毎 に与えても良いが、簡単のため本論では各層一律に与え る。FD の降伏変位は $\delta d_{f}=\alpha/\gamma \delta d_{2}$ となり((4)式)、 α に 応じて変化する。

aは0<a<1 であるが、EPD に対してFD を付加的なも

のと考え、本論ではaは0.4 を上限とする。適切なaの探 査は、まずaを設定した範囲で数点設定し、応答加速度 を評価する。代表点(例えば等価高さの節点)の応答加 速度に注目し、設定した数点の中から最小値を与える a_{opt} を選ぶ。次に、 a_{opt} の周りに範囲を狭め、その範囲で再 びaを数点設定し、応答加速度を推定する。これを繰り 返して、応答加速度の最小値を与える a_{opt} を求める(図 -9)。後述する通り、平滑化した応答スペクトルを用い た検証では、応答加速度の推定値のaによる変動は緩や かで、2.3 度の繰返しで収斂値が得られる。

§4. 試算

4.1 レベル2に対する鋼材ダンパー(EPD)の設計

多質点系の建物モデルを設定し、前述の方法で2種類 のダンパーを設計する。多質点系は制震構造を試算した 既往の文献¹⁹⁾を参考に設定するものとし、その概要は以 下の通りである。

- (1) 10 階建ておよび 20 階建ての建物のせん断型モデル を対象とする。各モデルの平面規模は、10 階建ては 22.4m×38.4m (2 スパン×6 スパン、片側コアタイ プ)、20 階建ては 35.2m×51.2m (3 スパン×8 スパ ン、中央コアタイプ)である。
- (2) 文献 19)では上記の従来架構の他に、より長周期化 させた架構(トリム架構)も設定されているので、 これも対象とする。トリム架構を主架構とした制震 構造(トリム型制震)は、従来架構を主架構とした 制震構造(従来型制震)に比べダンパーの設置量が 相対的に大きい。

まず、レベル 2 地震力に対して各層の層間変形角が 1/150 以内になるような EPD の剛性を求めた。得られた EPD 付きモデルの諸元を表-1、表-2に示す。また、 地震応答解析を行った結果を図-10、図-11 に示す。こ こで、主架構は弾性とする。

各建物とも10波の地震応答解析の平均応答値は層間変 形角=1/150 以下を満足している。最上層付近を除いた層 の2次剛性比(=Kd₂/(K_t+Kd₂))は従来型制震で0.4 程度、 トリム型制震で0.2 程度である。トリムの場合にはダンパ ーの設置量が多く、層全体の2 次剛性比が低くなり、応 答のばらつきも従来型に比べて大きくなっている。なお、 各 EPD 付きモデルに対する加速度のモーダル法による応 答推定値と時刻歴応答解析による最大値を図-12、図-13 に示す。本論で示した方法(マルチモード: MMD) の他に、最大変位により求めた等価剛性(幾何学的等価 剛性)による固有値解析によって得られたモードを用い て計算された加速度(シングルモード: SMD)も参考と して示す。MMD では最上階の加速度を過大評価してい るが、全体としては概ね動的解析結果と整合している。 一方、SMD については、高次が卓越する場合やダンパー の設置量が多い場合には動的解析結果に対して加速度応 答が過小評価になる。

4.2 レベル0地震力に対する摩擦ダンパーの設計

レベル 0 (L0) 地震力に対して、代表節点 (ここでは 10 階建てでは 6 階、20 階建てでは 13 階とした)の応答 加速度を最小とするような FD を EPD に複合させたダン パーを設計し、得られた EPFD 付きモデルに対して L0 入 力地震動を用いて地震応答解析を行った結果を、レベル2 (L2)時の制約により EPD のみを設置した EPD 付きモ デルの場合と比較する。

まず、従来型 EPD 付きモデルに対して、入力レベルを 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2 倍とした場合の地震応答解 析を行った。すると、概ね 0.2 倍のレベルから 200gal を 超える階が現れ始めることが分かった。書棚などの家具 の転倒が発生する床の応答加速度を 200gal と考え、ここ では L0 のレベル係数を 0.2 と設定する。この時、模擬地 震動 10 波の最大加速度は 72~86gal である。

計算された EPFD 付きモデルのダンパーの諸元は αの 収斂値から 2 節の諸式よって求められるので、 αのみを 表-3に示す。FD と L2 用の EPD の剛性比は γ=1.5 とし た。EPFD 付きモデルと EPD 付きモデルの時刻歴応答解 析結果を図-14、図-15 に示す。ここではモーダル法 (MMD) による推定値と重ねて示す。EPFD 付きモデル はEPD 付きモデルに比べて応答加速度を減少させている こと、また、EPFD 付きモデルに対してもモーダル法が応

答加速度をほぼ推定できていることが分かる。

表-1 10階建てEPDシステム諸元(従来型とトリム型)

層 No.	重量 (kN)	層剛性 (kN/cm)	EPD剛性 (kN/cm)	EPD降伏 変位(cm)	層 No.	重量 (kN)	層剛性 (kN/cm)	EPD剛性 (kN/cm)	EPD降伏 変位
10	8836	3957	754	0.500	10	8836	1586	2826	0.500
9	6695	4272	3176	0.500	9	6695	1801	5110	0.500
8	6731	4643	5905	0.500	8	6731	2203	7027	0.500
7	6731	5043	8818	0.500	7	6731	2448	9086	0.500
6	6830	6491	7023	0.500	6	6830	2919	9967	0.500
5	6868	6768	9718	0.500	5	6868	3062	11887	0.500
4	6926	6992	12505	0.500	4	6926	3283	13191	0.500
3	6942	7845	11603	0.500	3	6942	3830	12662	0.500
2	6959	8121	13455	0.500	2	6959	3836	14445	0.500
1	7085	5270	8249	1.000	1	7085	2800	7558	1.000

図-12 従来型 EPD 付きモデルの応答加速度の推定

図-13 トリム型 EPD システムの応答加速度の推定

図-15 トリム型EPDおよびEPFD付きモデル応答加速度

表-2 20 階建て EPD システム諸元 (従来型とトリム型)

層	重量	層剛性	EPD剛性	EPD降伏	層	重量	層剛性	EPD剛性	市店
No.	(kN)	(kN/cm)	(kN/cm)	変位(cm)	No.	(kN)	(kN/cm)	(kN/cm)	发1业 (am)
20	18460	6127	3159	0.500	20	18460	2789	6305	0.500
19	13945	7001	7970	0.500	19	13945	2929	10192	0.500
18	14105	8200	10378	0.500	18	14105	3125	11250	0.500
17	14105	8926	13436	0.500	17	14105	3429	13906	0.500
16	14310	11036	13867	0.500	16	14310	4440	15347	0.500
15	14361	11382	17199	0.500	15	14361	4530	18561	0.500
14	14361	12030	19639	0.500	14	14361	4733	21256	0.500
13	14448	12680	21854	0.500	13	14448	4913	23804	0.500
12	14493	14471	20061	0.500	12	14493	5992	23138	0.500
11	14537	14746	22746	0.500	11	14537	6139	25206	0.500
10	14405	15014	25539	0.500	10	14405	6306	27107	0.500
9	14405	15251	28557	0.500	9	14405	6382	29282	0.500
8	14434	16156	28675	0.500	8	14434	6947	29420	0.500
7	14454	16639	30517	0.500	7	14454	7291	30262	0.500
6	14454	16940	32948	0.500	6	14454	7367	32026	0.500
5	14491	18928	28087	0.500	5	14491	8550	29126	0.500
4	14569	19497	30733	0.500	4	14569	8759	30811	0.500
3	14673	22266	24833	0.500	3	14673	9309	32330	0.500
2	14776	23335	25049	0.500	2	14776	9742	34133	0.500
1	15222	18731	4832	1.000	1	15222	8428	13318	1.000
(1]]	北の財産	5×6m (4111111111111	m) 1	$\overline{\tau \nu}$	ろので		DD の降	米亦位オ

1 階の階高を 6m (他階は 4m) としているので 1 階の EPD の降伏変位を 大きくしている)

表-3 αの計算値

	従来型EPFL)システム	トリム型EPI	FDシステム
	10階	20階	10 階	20 階
α	0.11	0.17	0.12	0.13

§ 5. EPFD 付きモデルの応答性状

前節で得られた EPFD 付きモデルの地震応答性状について検討する。前節の EPFD 付きモデルは基準となる地 震力の 1.2 倍に対して変位を制約した EPD を元に、基準 地震力の 0.2 倍による応答加速度が最小となるように、か つ、ダンパーの総負担力が増加しないように FD を付加し て設定した。ここでは、他の入力レベルに対し、EPFD 付 きモデルと EPD 付きモデルの応答を比較検討する。

入力レベルを0.1,0.2,0.3,0.4,0.6,0.8,1.0,1.2倍とした場 合の EPD 付きモデルおよび EPFD 付きモデルの加速度応 答の例を図-16 に示す(従来型制震システム 20 階)。 EPFD 付きモデルの設計はレベル係数 0.2 で行ったが、他 の入力レベルに対しても、EPFD 付きモデルの加速度応答 はEPD 付きモデルに比べて減少する。これを EPFD 付き モデルのEPD付きモデルに対する各層の応答加速度低減 率として、図-17 に例示する(従来型制震システム 20 階)。0.1.0.2 レベルで加速度は概ね 60%程度、それ以上の レベルについては 80%~90%程度に低減されている。入 カレベルによって最大加速度の低減率が異なるのは、2 節で述べたように、FD による付加された減衰性は小さな 変位領域で発揮されるためであり、入力レベルが大きく なり、EPD によるエネルギー吸収が大きく、FD の効果が 相対的に小さくなると、EPD と EPFD の応答に差が無く なってくるためと考えられる。なお、図-17には最大層 間変形角に対する低減率の例も示す(従来型制震20階)。 初期の EPD を EPFD に変更しても、応答変位が大きくな ることはない。

§ 6. 告示スペクトルに対する試算

前節までは、提案する設計法の精度の確認のために、 模擬地震動の応答スペクトルから減衰による低減式 D_h を 導いた。しかし、模擬地震動に整合する D_h は減衰による 応答低減効果が大きい傾向がある。ここではより実用的 な観点から、文献 20)を参考に第 2 種地盤の地盤増幅率 Gs を求めた告示スペクトルを基準の地震力とし、さらに 強震記録に対する分析から得られている D_h (Kasai 式)¹⁵⁾ を用いて制震システムを構築し、その応答性状について 検討する。

設計用加速度応答スペクトル Sa を図-18 に示す。比較 のために、代表的な記録地震波 3 波 (50kine 相当) も合 わせて示す。 D_h 式 (Kasai 式) は以下のようになる。

$D_h = \{D_{ho} - 1\}(5T) + 1$	(T<0.2sec)
=D _{ho}	(0.2 <t<2.0sec)< td=""></t<2.0sec)<>
$=D_{ho}\{\sqrt{[h/h_o](T-2)/40+1}\}$	$(2.0 < T < 8.0 \text{sec}) \cdot \cdot \cdot (6.1)$

図-16 様々な入力レベルと EPD, EPFD 付きモデルの 最大応答加速度の関係

最大層間変形角低減率の関係

ここに、D_{ho}=√[(1+25h_o)/(1+25h)]、α=25(平均値)、α=10 (平均と標準偏差の和)、ここではα=25を用いる。

初めに、レベル2に対して設計した EPD 付きモデルの 応答を図-19に例示する(従来型制震20階)。目標変位 は層間変形角で1/150であり、主架構は弾性としている。

次に、4.2 で示した手法により EPFD を設計する。設計 用地震動のレベル係数を0.2 として得られた EPFD 付きモ デルと L2 に対して設計した EPD 付きモデルに対して、 レベル係数 0.2 の地震動を入力した場合の応答加速度の 比較を図-20 に例示する。また、レベル係数を変えて動 的解析を行い、EPD 付きモデルに対する EPFD 付きモデ ルの応答加速度の低減率を図-21 に例示する。図より、 告示スペクトルと強震記録に応じた応答低減式(6.1)式を 用いても、EPFD 付きモデルの応答性状が前節と同様の傾 向を示していることが分かる。

次に、代表的な記録地震波(50kine 相当)に対する EPD および EPFD 付きモデルの応答性状についても、入力レ ベルを変えて、同様の検討を行った。図-22 に Hachinohe NS 入力の場合の加速度応答値の低減率を示す。理論的に は、凹凸のあるスペクトルでは固有周期(応答による実 効周期)の変動と応答スペクトルの凹凸により、EPFD付 きモデルの応答が常にEPD付きモデルに比べて小さいと は限らない。特に、加速度においては高次モードの影響 も受けやすいと考えられる。

図-22 によれば、入力レベルが大きくなり、FD の効果 が小さくなると、加速度応答が若干悪化する階も認めら れる。しかし、入力レベルがレベル2(レベル係数 1.0) より小さければ、ほとんどの階で応答は低減している。 ただし、低減率は概ね 0.8 程度で、模擬地震動の場合に比 べて EPFD による応答低減効果は小さくなっている。

§7. まとめ

本論では、鋼材ダンパー(EPD)に摩擦ダンパー(FD) を並列に設置した複合ダンパー(EPFD)の設計法を提案 し、その妥当性に関する検討を行った。複合化の狙いは、 極希な巨大地震による構造体の変形を一定値以下にする ための主要なダンパーを EPD とし、さらに、より発生頻 度の高い小地震に対して、室内被害の防止や居住性の改 善のために小さな変位から制震効果を発揮するように FD を用いるというものである。以下に得られた結論を示 す。

- •1 自由度系の減衰特性の検討から、本論で想定している EPFD について、FD が EPD の降伏変位より小さい 領域での減衰性を補う性状が確認できた。FD の減衰性 は FD の初期剛性比、耐力比に依存しており、これら により減衰の大小を制御できる。
- ・提案した EPFD の設計法により、EPD 付きモデルに比 べて、より小さな入力レベルに対しても加速度低減効 果のある制震システムが得られる。
- ・ EPFD 付きモデルは L2 地震力に対し、当初の目的であ る変位制約を満足している。
- ・加速度および変位の低減効果は EPFD が設計された入 カレベル(L0 地震力)以外の入力レベルでも認められ る。ただし、入力レベルが増加し、応答変位が EPD の 降伏変位を大きく上回ると FD の減衰効果は低下する。
- 本論で提案した設計法で採用されているマルチモード を用いた等価線形化によるモーダル法は、最大応答変 位だけでなく最大応答加速度も良い精度で評価できる。
- ・工学基盤スペクトルと Gs による加速度スペクトルと 強震記録から得られた D_h式(Kasai 式)を用いた実用 的な設計に対しても、計算された制震システムは妥当 な推定結果を与え、加速度および変位の低減効果も同 様に認められる。
- ・代表的設計用入力地震動(規準化された強震記録)を 様々なレベルで入力した場合にも、入力レベルがレベ

ル2より小さければ、応答低減率は概ね0.8程度であり、模擬地震動の場合に比べて低減効果は小さくなるものの、ほとんどの階で応答は低減している。

図-18 限界耐力計算法に準じた告示スペクトル

く参考文献>

- 1) 笠井和彦、寺本道彦、渡邉祐一: 粘弾性体と弾塑性体の直列結合からなるパッシブ制振装置の挙動に関する研究、日本建築学会構造系論文集、 556号、pp.51-58、2002.6
- 2) 木村雄一、一色祐二、成原弘之、辻田修、欄木龍大、高山正春:弾塑性・粘弾性複合ダンパーの開発(その1~3)、日本建築学会大会学術講 演梗概集、pp.759-764、2002.8
- 3) 遠藤文明、後閑章吉、橋本康則、笠井和彦、佐野剛志、貞末和史: 粘弾性体と摩擦ダンパーの直列接合からなる制震層値(その1~4)、日本 建築学会大会学術講演梗概集、pp.963-970、2005.9
- 4) 山本、曽根: 広範囲の振幅領域に効果を発揮する粘弾性ー鋼材直列型ダンパーの開発(その1、2)、日本建築学会大会学術講演梗概集、 2004,pp.167-170
- 5) 笠井和彦、渡邉祐一、湊直生: 粘弾塑性ダンパーをもつ制振構造の動的挙動に関する研究、日本建築学会構造系論文集、588 号、pp.87-94、2005.2
- 6) 笠井和彦、川鍋佳史:粘性減衰・履歴減衰を併用する構造における動的特性と地震最大応答の等価線形予測法、日本建築学会構造系論文集、 591 号、pp.43-51、2005.5
- 7) 辻聖晃、中村恒善: Maxwell 型の粘性ダンパーを有するせん断型構造物の地震時指定層間変位に対する剛性設計解列、日本建築学会構造系論 文集、491号、pp.55-64、1997.1
- 8) Yutaka Nakamura and Tsuneyoshi Nakamura: Stiffness Design for Specified Nonexceedance Probability of Seismic Response, Earthquake Spectra, Vol.14, No.1, pp165-188,1998

9) 半澤徹也: 拡張カルマンフィルタを用いたせん断型制震系の地震応答指定型層剛性設計、日本建築学会構造系論文集、549号、pp.35-42、2001.11

- 10) 磯田和彦、真瀬伸治、寺田岳彦、佐武直紀:溝形鋼で補剛したアンボンドブレースダンパーの開発(その 1~3)、日本建築学会大会学術講 演梗概集、pp.663-668、2001.9
- 11) Takeru Igusa, Armen Der Kiureghian and Jerome L. Sackman : Modal decomposition method for stationary response of non-Classically damped systems, Earthquake Engineering and Structural Dynamics, Vol.12, pp.121-136, 1984
- 12) J.N.Yang and S.Sarkani : A response spectrum approach for seismic analysis of nonclassically damped structures, Engineering Structures, Vol.12, pp.173-184,1990
- 13) 笠井和彦、渡辺厚:制振構造の性能、1997年度日本建築学会大会(関東)構造部門(振動)パネルディスカッション資料「耐震設計におけ る性能評価」、pp.19-38、1997.9
- 14) 大崎順彦:新・地震動のスペクトル解析入門、鹿島出版会、1998
- 15) 笠井和彦、伊藤浩資、渡辺厚:等価線形化手法による一質点弾塑性構造の最大応答予測、日本建築学会構造系論文集、571号、pp.53-62、2003.9 16) 日本建築学会:建築物の減衰、2000.10
- 17) Foss, K.A. : Coordinates which Uncouple the Equatihons of Motion of Damped Linear Dynamic Systems, Journal of Applied Mechanics, ASME, Vol.32, No.3,pp.361-364, Spet.1958
- 18) 岡野創、小鹿紀英、吉川和秀:高次モードを考慮した等価線形化法によるせん断型モデルの応答評価、日本建築学会構造系論文集、591号、 pp.113-121、2005.5
- 19) 日本免震構造協会編:パッシブ制振構造設計・施工マニュアル第2版、平成17年
- 20) 国土交通省住宅局建築指導課、同建築研究所、日本建築センター、建築研究振興協会編集: 2001 年版限界耐力計算法の計算例とその解説、 平成13年3月
- 21) Newmark, N. M. and Rousenblueth, E.: Fundamentals of Earthquake Engineering Prentice-Hall Inc.1971