臨海副都心における独立型グリーン水素活用システムの運用実証

陣野	良平	山根	俊博	下田	英介
(技	術研究所)	(技	術研究所)	(技術	6研究所)

The Demonstration of Independent System Using Green Hydrogen in the Tokyo Waterfront Area

Ryohei Jinno, Toshihiro Yamane and Eisuke Shimoda

本論文は、太陽光発電設備、蓄電池および燃料電池による、独立型電力供給システムの実証について述べる。 本システムは、郊外で生成したグリーン水素を運搬し利用する。各電源設備の制御を行うため、エネルギー管理 システムを導入した。電源容量や制御パラメータは設計計算により決定した。設計計算にモンテカルロ法を導入 することにより、電力供給の安定性と効率性について検証した。構築したシステムの試運転を実施し、安定した 自立運転が継続されることを実証した。

This paper describes about the demonstration of an independent power supply system that integrates solar power generation, batteries, and fuel cells. The system is designed with the assumption that green hydrogen produced in suburban areas will be transported to urban areas. Control logic utilizing a BEMS was introduced to manage the integration of each equipment. The rated capacity of each equipment and the control parameters were defined through design calculations. We verified the stability and efficiency of energy supply by applying a calculation method that incorporates the Monte Carlo method. Commissioning of the system was conducted to demonstrate the continuous stability of independent operation.

1. はじめに

気候変動をもたらす温室効果ガスの大幅削減が求 められる中、企業の環境経営や自治体等の支援が活 発化している。対策として、太陽光発電設備(以 下、「PV」とする)の導入が一般的に行われてい る。しかし都市部では、設置面積の制約により大量 導入が難しいという課題がある。

電力システムにおけるグリーン水素と、オフサイト水素の供給プロセスを図-1に示す。

図-1 電力システムにおけるグリーン水素と オフサイト水素の位置づけ

再生可能エネルギーと相関性のある電力の供給によ り、製造される水素をグリーン水素と呼ぶ¹⁾。また 需要地から離れた場所で水素を製造し、輸送するオ フサイト水素は、今後も利用拡大が想定される。オ フサイト水素の導入によって、CO₂削減効果を示 した事例²⁾は既に存在し、特に都市部への水素導入 に有用である。水素を電力に変換する燃料電池(以 下「FC」とする)の利用により、PVの発電電力量 が不安定な状況でも、安定した電力供給が可能とな る。

このため臨海副都心においても、2030 年 CO₂ 排 出量 50%の削減(2019 年の同地区 CO₂ 排出量 28.4 万 t-比)と 2050 年のカーボンニュートラル達成に 向け、事業者には PV や蓄電池(以下、「BAT」とす る)を用いた再エネ化や電化の推進に加え、グリー ン水素や FC の導入が求められている ³⁾。

本論文では、筆者らが開発した電源制御技術 4) により PV、BAT および FC を連携させ、オフサイ ト水素を利用する実証システムを臨海副都心に構築 した事例について述べる。2024 年 5 月より実運用 を開始したため、設計手法と運用状況を説明する。 2. 実証システム

2.1 システム概要

実証サイトの外観を**写真**-1 に示す。PV、BAT、 FC、および水素供給設備によって構成される独立 型システムである。構内に建設された管理棟には BEMS(Building Energy Management System)、 空調機器、加えて外壁面に薄膜 PV(定格:1.428kW) が設置される。また管理棟は、会議所としての機能 を有する。負荷としては、管理棟に加え、隣接する 商業ビルの照明等となる。

写真-1 実証サイトの外観

2.2 系統構成

実証システムの系統構成の概要を図-2に示す。 独立系統となるが、商業ビルの照明負荷と、管理棟 の負荷 A、B のうち負荷 B は重要負荷と位置づ け、メンテナンス時等において、MCDT の切換え により商用系統から電力供給が可能である。

以降、PV 出力、BAT 出力、FC 出力および負荷 消費電力をそれぞれ、 Ppv(kW)、 PBAT(kW)、

PFC(kW)、および PL(kW)とする。また PV、BAT、 FC、および負荷消費の電力量を、それぞれ WPV(kWh)、 WBAT(kWh)、 WFC(kWh) および WL(kWh)とする。但し、PBAT は放電側を正とする。

2.3 電源設備仕様

各電源設備の仕様を表-1 に示す。本実証サイト は臨海部のため塩害仕様とした。各電源設備の外観 を写真-2 に示す。また電源容量の設計手法は3章 に示す。

表一	1	電源	設(備	士	谦

PV	種別	単結晶
	定格出力(モジュール)	82.8kW
	枚数	180 枚
	設置方位	真南
	設置角	20度
	PCS 台数	6 台
	定格出力(PCS)	10kW
BAT	種別	リチウムイオン
	蓄電池容量	265.3kWh
	PCS 容量	100kVA
	その他	自立運転出力
FC	種別	純水素型 PEFC
	定格出力	50kW

(a) 蓄電池(BAT)

(b) 燃料電池(FC) 写真-2 電源設備の外観

2.4 BEMS 制御の概要

本システムでは、BAT が CVCF 制御により独立 系統内の電圧と周波数を一定とし、BAT 出力 PBAT によって、電力収支を維持する。BEMS による FC 出力制御の概要を図-3に示す。BATの SOC(State Of Charge(%))が下限設定値(以下、「SOClimit1」と する)まで減少後、FC 出力 PFCを増加させ、上限設 定値(以下、「SOClimit2」とする)まで再充電される と PFC を 0kW に戻す。SOClimit1 および SOClimit2 の設計手法は5章に示す。

図-3 FC 出力制御の概要

3. 電源容量の設計計算

3.1 モンテカルロ法を用いた計算過程

モンテカルロ法 5を用いて、各電源設備の電源容 量を決定する。PV 出力 Ppv は、天候や季節に依存 し変動する。同手法により、PV 出力パターンをラ ンダムに複数生成し設計計算に用いることで、複数 の気象条件下での電力供給の安定性評価が可能とな る。

設計計算の計算過程を図-4に示す。設計変数で ある PV 定格出力毎に、複数の気象条件における PV 出力パターンを生成する。水素供給量と併せ、 PV と FC の発電電力量を算出し、電力の供給可能 確率を求める。

また設計変数である BAT 定格容量と FC 定格出 カについて、PV 出力パターン毎に線形計画法 ^のに よる最適化を実施し停電発生確率を算出する。

図-4 設計計算の計算過程

3.2 太陽光発電設備の出力パターン

昨年の臨海部の日射量 DB⁷より、実証システム の運転開始時期である5月から6月の1週間分の日 射量データを無作為で抽出する。

P_{Pv}定格値は設置制約上、20kW、40kW、60kW、 80kW および 100kW とし、発電電力量推定方法⁸⁾ を用いて、週間の PV 出力パターンを作成する。

実証サイトの日影影響を考慮するため、CAD を 使用し中間期、冬期及び夏期の日照シミュレーショ ンを行い、日影図を作成する。PV パネル枚数を 180 枚(80kW)と想定する場合の、中間期における 日影図を図-5 に示す。影響を受けるパネル面積を 図面上から測定し、パネル全体の面積で除すること で、PV 出力の発生割合を算出する。発電電力量推 定方法を用いた算出結果に、発生割合を乗じること で、日影影響を考慮した Ppvを求める。一例として、 5/1~5/7 のケースを図-6 に示す。

図-6 PV 出力パターンの一例

3.3 太陽光発電設備定格出力の設計

設計変数である P_{PV} 定格値毎に、電力の供給可能 確率を算出し、定格値を決定する。供給可能確率の 計算過程を図-7に示す。

図-7 電力の供給可能確率の計算過程

日射量 DB より抽出するデータを基に、3.2 節の 手法により週間の PV 出力パターンを作成する。各 時刻の P_{PV}を積算し、週間の PV 電力量 W_{PV}を算出 する。また水素補給量は 250Nm³/week とし、週間 の FC 電力量 W_{FC} を求める。W_{PV} と W_{FC} の合計値 より発電電力量を算出、負荷消費電力量 W_L との比 較を行い、電力供給可否の判定を行う。

これを 10000 ケース繰り返し、nin と nout を算出 し、式(1)に従い供給可能確率 p を求める。p が一定 値以上となる Ppv 定格値を決定する。

$$p = \frac{n_{in}}{n_{in} + n_{out}} \tag{1}$$

 $n_{in}: W_{PV} + W_{FC} \ge W_L$ を満たすケース数 $n_{out}: W_{PV} + W_{FC} < W_L$ を満たすケース数

3.4 蓄電池定格容量と燃料電池定格出力の設計

設計変数である W_{BAT} と P_{FC} の定格値は、設置性 や導入コストを考慮し最大 250kWh と 50kW とし た。定格値毎に停電発生確率を算出し、定格値を決 定する。停電発生確率の計算過程を図-8に示す。

図-8 W_{BAT}、P_{FC}毎の停電発生確率の計算過程

3.2 節で述べた PV 出力パターンのケース毎に、 線形計画法により、WBAT と PFC の最適化を実施す る。WLを負荷条件とし、目的関数 Fを式(2)の通り 定める。第一項は、BAT 定格容量を示し、第二項 は BAT 残量の平均値を示す。それぞれ導入コスト 低減と、BAT 残量枯渇による停電の防止を目的と し、多目的最適化手法 のに従い、重みを設定する。

$$F = w \cdot \max_{0 \le x \le N-1} W_{BAT}(x\Delta t) - \frac{\sum_{k=0}^{N-1} W_{BAT}(k\Delta t)}{N}$$
(2)

w: 重み N: データ数 Δt: データ周期

ある BAT 容量を W_{BAT}^{R} とすると、各ケースにお ける最適解 W_{BAT}^{n} のうち W_{BAT}^{n} > W_{BAT}^{R} を満たすケ ース数 n_{BAT} を算出し、式(3)に従い W_{BAT}^{R} における 停電発生確率 q_{BAT} を求める。 q_{BAT} が一定値以下と なる W_{BAT} 定格値を決定する。FC 出力についても 同様に、式(4)に従い、最適解 P_{FC}^{n} より P_{FC}^{R} におけ る停電発生確率 q_{FC} を求め、 P_{FC} 定格値を決定する。

$$q_{BAT} = \frac{n_{BAT}}{N} \tag{3}$$

$$q_{FC} = \frac{n_{FC}}{N} \tag{4}$$

 $q_{BAT}: W_{BAT}^{R}$ における停電発生確率 $q_{FC}: P_{FC}^{R}$ における停電発生確率 線形計画法の解の総数: N < 10000 線形計画法の解: W_{BAT}^{n}, P_{FC}^{n} $W_{BAT}^{n} > W_{BAT}^{R}$ を満たすケース数: n_{BAT} $P_{FC}^{n} > P_{FC}^{R}$ を満たすケース数: n_{FC}

4. 電源容量の設計結果

4.1 太陽光発電設備定格出力

Prv定格値毎の、PVとFCによる電力の供給可能 確率を図-9 に示す。WLに対する供給可能確率が 99.9%以上となることを条件とし、この条件を満た す最小の Prv定格値は 80kW となった。80kW 以上 の出力を確保するため、公称出力 460W のパネルを 180 枚設置し、実装容量を 82.8kW に決定した。

なお検討で用いた WL は、管理棟、商業ビルの照 明負荷、電源補機、制御電源によるもので、 838kWh/week とした。実証サイトの運用形態から 1日の総消費電力量は変動せず、照明負荷が点灯す る夜間(18~23時)に需要ピークが発生する想定と した。FC の燃料消費効率は 1.16kWh/Nm³とし、 水素補給量 250Nm³/week より、 W_{FC} は 291kWh/weekとした。

4.2 蓄電池定格容量と燃料電池定格出力

 W_{BAT} と P_{FC} 定格値毎の停電発生確率を、図-10 に示す。停電発生確率が 0.5%以下となることを条 件とした。この条件を満たす最小の W_{BAT} 定格値は 247kWh、 P_{FC} 定格値は 10kW となった。これらの 設計値から装置を選定した結果、BAT については、 定格容量 265.3kWh、定格出力は 100kVA とした。 FC については、定格出力が 10kW を超える製品の 中で、BEMS との連携実績を持つ機種を選定し 50kW とした。

5.制御パラメータの設計

5.1 設計計算

2.4 節で述べた BEMS 制御における SOC_{limit1} お よび SOC_{limit2}の評価過程を図-11 に示す。

SOC_{limit1}の設定範囲を 20~70%(10%刻み)とし、 SOC_{limit2}の設定範囲を 40~80%(10%刻み)とする。 3.2 節で述べた PV 出力パターンのケース毎に、電 力収支計算を基にしたシミュレーション ¹⁰⁾を実施 する。結果から水素燃料消費量を算出し、燃料消費 量が最小となる SOC_{limit1} および SOC_{limit2}を選定す る。なお実機特性の測定を基に、シミュレーション 環境を構築する ¹¹⁾。

図-11 SOC_{1imit1}および SOC_{1imit2}の評価過程

5.2 シミュレーション結果

シミュレーションにおける、停電発生ケースを図 -12 に示す。5/1~5/5 は、Ppv が十分得られず SOC が減少し続け、20%まで減少した段階で、 BEMS 制御によって FC が起動している。余剰電力 により 40%まで再充電された段階で、BEMS 制御 により FC が停止している。また 5/6 0:00 に、一時 的に商用電源に切り替わっている。

また、各シミュレーションケースから水素燃料消 費量を算出したため、制御パラメータ毎の結果を表 -2 に示す。水素燃料消費量が最小となる SOClimit1=20%、SOClimit2=40%を、制御パラメータ として選定した。

表-2 水素燃料消費量(Nm³/week)と制御 パラメータのシミュレーション結果

	SOC _{limit2}					
SOC _{limit1}	80%	70%	60%	50%	40%	
70%	142.303	-	-	-	-	
60%	111.737	98.764	-	-	-	
50%	107.772	90.447	73.904	-	-	
40%	91.577	86.757	70.480	54.371	-	
30%	71.046	65.876	62.161	52.832	40.822	
20%	45.462	42.162	39.561	36.080	<u>31.461</u>	

6. 試運転結果

2024/8/1~8/7 の試運転結果と 2024/10/5~10/11 の運用結果の一例を図-13 に示す。接続された負荷は、管理棟、商業ビルの照明負荷、電源補機、制 御電源および試験用の負荷抵抗器となる。

6.1 手動操作による FC 動作確認

FC の動作確認のため、手動操作にて起動した。 FC 起動時の余剰電力による BAT の過充電を防止す るため、事前準備として Ppv を手動で停止した。ま た負荷抵抗器を使用し SOC を事前に減少させた。

8/1 に動作確認を実施した。11:00 に P_{PV} を手動 で停止し、負荷抵抗器を約 35kW で動作させ SOC を 90%付近まで低下させた。12:00 に手動操作にて P_{PV}=15kW を設定し FC を起動、短時間ではあるが 動作の確認がとれた。

6.2 BEMS 制御による FC 動作確認

SOC 低下時の運転継続を確認するため、BEMS 制御による FC の動作確認を実施した。事前準備と して日中に Ppv を手動で停止し、SOClimit1=20%ま で減少させた。

 $8/6 \sim 8/7$ に動作確認を実施した。8/6 より P_{PV} を 手動で停止した。BAT のみによって電力を供給し たため、8/7 の 6 時台に SOC が 20%を下回った。 BEMS 制御により P_{FC} の設定が行われ、FC が起動 した。この際の P_{FC} の設定値は 20kW であり、余剰 電力分は BAT に充電された。約 3 時間後、SOC が 40%まで再充電したことで、BEMS 制御により P_{FC} の設定が解除され、FC は停止した。以上より BEMS 制御について、想定通りの動作であること が確認できた。

6.3 自立運転の継続確認

自立運転の継続を確認するため、日中の P_{PV} およ び夜間の P_{BAT} による電力供給で負荷消費電力 P_L を 賄うことを確認した。また、日中に余剰電力が発生 する場合は、SOC が再充電され P_{PV} の抑制制御が 作動し、過充電が防止されることを確認した。

10/7 は天候が安定しており、日中の P_{PV} は最大 40kWを超え SOC は 100%まで再充電した。午後は P_{PV}の抑制制御が作動した。10/8 以降は悪天候によ る P_{PV}低下で、SOC が減少し続けたが、10/10 の日 中の余剰電力で再充電されており、全日の自立運転 の継続が確認できた。

(a) 2024/8/1

(c) $2024/10/5 \sim 2024/10/11$

図-13 試運転結果

7.まとめ

本報告では、グリーン水素を活用した独立型シス テムについて述べた。PV、BAT および FC の電源 容量や、BEMS 制御の検証結果について報告した。

設計計算に基づき、電力の供給可能確率と停電発 生確率をモンテカルロ法により算出し、電源容量の 設計を行った。また同手法とシミュレーションによ り、水素燃料消費量が最小となる制御パラメータの 設定を行った。試運転結果からは、SOC 低下時に おいても、BEMS 制御に基づく FC 出力の制御によ り電力供給の維持が確認された。また PV による出 力変動に応じ BAT が出力を調整することで、安定 した自立運転が継続されることを実証した。両結果 より、商用系統電力を使用せず、BAT の自立運転 による独立型実証システムとして、運用可能である ことが確認できた。

今後は、実在する建物の負荷パターンを模擬し 様々な検証を行うため、外部制御可能な負荷抵抗を 設置する予定である。負荷抵抗やシミュレーション 環境等を使用し、運用データを収集・解析のうえで、 グリーン水素のさらなる有効活用が可能な実証シス テムの構築に取り組みたい。

謝辞

本研究・開発にあたり、実証サイト提供や調整、 技術指導をいただきました東京都港湾局、産業技 術総合研究所、株式会社東京テレポートセンター の皆様方に謝意を示します。

<参考文献>

- EUR-Lex : Document 32023R1184, <u>https://eur-lex.europa.e</u> u/legal-content/EN/TXT/?uri=CELEX%3A32023R1184
- 東京都港湾局:「臨海副都心カーボンニュートラル戦略」の 策定について,<u>https://www.kouwan.metro.tokyo.lg.jp/rin</u> <u>kai/cn/</u>
- 瀬川裕太他:街区建物におけるオフサイト水素活用事例の 紹介と CO2 削減効果の評価,日エネ学会大会要旨集,No.3
 3, p. p. 130-131, 2024.7.31
- 4) 森野仁夫他:アルバカーキ市の商業ビルにおけるスマート グリッド実証実験 その1 実証実験の概要とシステム構成, 日本建築学会大会学術講演会梗概集, No. 41686, p. p. 1393-1394, 2013 年
- 5) 鎌谷研吾:モンテカルロ統計計算, 講談社, 2020.3.27
- 6) 瀬川裕太 他: 建物ゼロエミッション化に資する再エネ水素

利用システムの役割と導入設備容量に関する評価, 電気学 会論文誌 B (電力・エネルギー部門誌), Vol141, No.2, p. p. 88-96, 2021 年

- 7)新エネルギー産業技術総合開発機構: "NED0日射量データ ベース閲覧システム",<u>https://appww2.infoc.nedo.go.jp/</u> <u>appww/metpv_map.html</u>
- 8) JISC8907:2005:太陽光発電システムの発電電力量推定方法
- 9)中山弘隆,谷野哲三:多目的計画法の理論と応用,コロナ 社,1994.6.30
- 内山洋司:電力貯蔵と供給の最適化技術,NTS, 2023.10.23
- 11) 足立修一:制御のためのシステム同定,東京電機大学出版
 局,1996.11.30